Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Language
Document Type
Year range
1.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1479515.v1

ABSTRACT

COVID-19 vaccination has resulted in excellent protection against fatal disease, including in the elderly. However, risk factors for post-vaccination fatal COVID-19 are largely unknown. We comprehensively studied three large nursing home outbreaks (20-35% fatal cases) by combining SARS-CoV-2 aerosol monitoring, whole-genome phylogenetic analysis, and immunovirological profiling by digital nCounter transcriptomics. Phylogenetic investigations indicated each outbreak stemmed from a single introduction event, though with different variants (Delta, Gamma, and Mu). SARS-CoV-2 was detected in aerosol samples up to 52 days after the initial infection. Combining demographic, immune and viral parameters, the best predictive models for mortality comprised IFNB1 or age, viral ORF7a and ACE2 receptor transcripts. Comparison with published pre-vaccine fatal COVID-19 signatures and reanalysis of single-cell RNAseq data highlights the unique immune signature in post-vaccine fatal COVID-19 outbreaks. A multi-layered strategy including environmental sampling, immunomonitoring, and early antiviral therapy should be considered to prevent post-vaccination COVID-19 mortality in nursing homes.


Subject(s)
COVID-19
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.14.472630

ABSTRACT

The SARS-CoV-2 Omicron variant was first identified in November 2021 in Botswana and South Africa 1,2 . It has in the meantime spread to many countries and is expected to rapidly become dominant worldwide. The lineage is characterized by the presence of about 32 mutations in the Spike, located mostly in the N-terminal domain (NTD) and the receptor binding domain (RBD), which may enhance viral fitness and allow antibody evasion. Here, we isolated an infectious Omicron virus in Belgium, from a traveller returning from Egypt. We examined its sensitivity to 9 monoclonal antibodies (mAbs) clinically approved or in development 3 , and to antibodies present in 90 sera from COVID-19 vaccine recipients or convalescent individuals. Omicron was totally or partially resistant to neutralization by all mAbs tested. Sera from Pfizer or AstraZeneca vaccine recipients, sampled 5 months after complete vaccination, barely inhibited Omicron. Sera from COVID-19 convalescent patients collected 6 or 12 months post symptoms displayed low or no neutralizing activity against Omicron. Administration of a booster Pfizer dose as well as vaccination of previously infected individuals generated an anti-Omicron neutralizing response, with titers 5 to 31 fold lower against Omicron than against Delta. Thus, Omicron escapes most therapeutic monoclonal antibodies and to a large extent vaccine-elicited antibodies.


Subject(s)
COVID-19
3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.06.29.450330

ABSTRACT

SARS-CoV-2, the causative agent of COVID-19 was first detected in Belgium on 3rd February 2020, albeit the first epidemiological wave started in March and ended in June 2020. One year after the first epidemiological wave hit the country data analyses reveled the temporal and variant distribution of SARS-CoV-2 and its implication with Belgian epidemiological measures. In this study, 766 complete SARS-CoV-2 genomes of samples originating from the first epidemiological were sequenced to characterize the temporal and geographic distribution of the COVID-19 pandemic in Belgium through phylogenetic and variant analysis. Our analysis reveals the presence of the major circulating SARS-CoV-2 clades (G, GH and GR) and lineages circulating in Belgium at that time. Moreover, it contextualizes the density of SARS-CoV-2 cases over time with non-intervention measures taken to prevent the spread of SARS-CoV-2 in Belgium, specific international case imports and the functional implications of the most representative non-synonymous mutations present in Belgium between February to June 2020.


Subject(s)
COVID-19
4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.05.05.078758

ABSTRACT

Since the start of the COVID-19 pandemic, an unprecedented number of genomic sequences of the causative virus (SARS-CoV-2) have been generated and shared with the scientific community. The unparalleled volume of available genetic data presents a unique opportunity to gain real-time insights into the virus transmission during the pandemic, but also a daunting computational hurdle if analysed with gold-standard phylogeographic approaches. We here describe and apply an analytical pipeline that is a compromise between fast and rigorous analytical steps. As a proof of concept, we focus on the Belgium epidemic, with one of the highest spatial density of available SARS-CoV-2 genomes. At the global scale, our analyses confirm the importance of external introduction events in establishing multiple transmission chains in the country. At the country scale, our spatially-explicit phylogeographic analyses highlight that the national lockdown had a relatively low impact on both the lineage dispersal velocity and the long-distance dispersal events within Belgium. Our pipeline has the potential to be quickly applied to other countries or regions, with key benefits in complementing epidemiological analyses in assessing the impact of intervention measures or their progressive easement.


Subject(s)
COVID-19
5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.04.23.056838

ABSTRACT

Introductory paragraphSince the emergence of SARS-CoV-2 causing COVID-19, the world is being shaken to its core with numerous hospitalizations and hundreds of thousands of deaths. In search for key targets of effective therapeutics, robust animal models mimicking COVID-19 in humans are urgently needed. Here, we show that productive SARS-CoV-2 infection in the lungs of mice is limited and restricted by early type I interferon responses. In contrast, we show that Syrian hamsters are highly permissive to SARS- CoV-2 and develop bronchopneumonia and a strong inflammatory response in the lungs with neutrophil infiltration and edema. Moreover, we identify an exuberant innate immune response as a key player in pathogenesis, in which STAT2 signaling plays a dual role, driving severe lung injury on the one hand, yet restricting systemic virus dissemination on the other. Finally, we assess SARS-CoV- 2-induced lung pathology in hamsters by micro-CT alike used in clinical practice. Our results reveal the importance of STAT2-dependent interferon responses in the pathogenesis and virus control during SARS-CoV-2 infection and may help rationalizing new strategies for the treatment of COVID-19 patients.


Subject(s)
Lung Diseases , Bronchopneumonia , COVID-19 , Edema
SELECTION OF CITATIONS
SEARCH DETAIL